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Calculated and Measured Characteristics of a
Microstrip Line Fabricated on a Y-Type
Hexaferrite Substrate

Hoton How, Xu Zuo, Elwood Hokanson, Leo C. Kemp8enior Member, IEEEand Carmine VittoriaFellow, IEEE

Abstract—Numerical calculations have been applied to a mi- behavior with frequency and the bias magnetic field. For ex-
crostrlp line fabricated on a Y-type hexaferrite substrate using the  gmple, the effective permeability for wave propagation for fre-
Green'’s function technique. The formulation allows the ferrite sub- quencies around ferromagnetic resonance (FMR) varies from a

strate to be magnetized along an arbitrary direction. Current po- .. .
tentials have been used to construct the Galerkin elements and the VerY large positive number to a very small negative number en-

resultant calculational scheme is applicable even when ferrimag- compassing the value zero, accompanied by a nonzero imagi-
netic resonance is approached. Calculations compared reasonably nary part accounting for magnetic loss [1]. Most useful magnetic

well with measurements. microwave devices operate near FMR so that the rapid change
Index Terms—Arbitrary magnetic bias, calculations near ferro-  in magnetic permeability can be effectively utilized either to ob-
magnetic, current-potential method, dyadic Green’s function, fer-  tain frequency-tuning capability or to remove the degeneracy
rite substrate, microstrip line, Sommerfeld integral, transfer-ma-  |,ohveen modes, thereby inducing nonreciprocity in wave prop-
trix method. agation [7]. For example, ferrite phase shifters [8], resonators
[9], and filters [1] are constructed according to the first principle
I. INTRODUCTION [7], and circulators and isolators according to the second [10].

NISOTROPIC substrates, due to either the process Mpst calculations in the past have been formulated for frequen-
material preparation or ’crystalline asymmetry haveles away from FMR in order to avoid numerical difficulties. In
been used in the fabrication of microwave integrated circuf@!S Paper, numerical solutions near FMR have been attempted.

(MICs). Electromagnetic wave propagation in a ferrite suﬁr-his was possible for us because we introduced techniques for

strate is also anisotropic in the presence of a dc-bias magn&t&rent potentials to be discussed here. ,
field, called the gyromagnetic effect. For the former case, the B€foré solving the ac electromagnetic problem associated

dielectric properties for wave propagation in the substrate cﬁ,’Hh a ferrite substrate, one is required to solve the dc equilib-

be described in terms of a permittivity tensor of rank 2 an§Um problem first in order to calculate the demagnetizing field

for the latter case, Polder permeability tensor results undf€ to the finite geometry of the substrate [7]. In a cubic-ferrite
the small-signal approximations [1]. While many author§amp|_e materlal_, anisotropy is usually_ not_|mportant since |t_ is
have applied numerical calculations to microwave circuitriegnall in comparison to the external bias field. In a hexaferrite
containing anisotropic substrates [2][6], in this paper, \A%Jbstrate, the mtt_arnal anisotropy field can be as large as 50
consider wave propagation in a gyromagnetic substrate. e a”dg hence, it can no_longer be neglectgd [11]. Actually,
specifically consider the electromagnetic wave propagatiJi‘t’?_‘x"’,‘femteS are purposely mtrqducgd to aIIe\{late [12], or even
in a microstrip transmission line in which the metal strip i€iMinate [13], the external bias field requirement at high
fabricated on top of a hexaferrite substrate for which the bif§duencies. In a hexaferrite material, magnetic anisotropy
magnetic field can be applied along an arbitrary direction. TiPPears in the form of an easy axis or an easy plane. For an
formulation contained in this paper is applicable to a genefdrtype hexaferrite, the-axis is an easy axis of magnetization,
stratified dielectric/magnetic structure containing circuit inhdNd the magnetization vector prefers to be aligned along the
mogeneities at the interfaces. A Green’s function approachcj'élx'S soasto '9"Ver its free energy [7]. For a Y-t)./pe.hexafer—
adopted in the following analysis. rite, theab-plane is an easy plane, and the magnetization vector

In contrast to the permittivity tensor, Polder tensor elemerifs Energetically favorable to be aligned in the-plane [12].

are usually frequency dependent and exhibit strong resonafr@yations (Al4a) and (A14b) describe the respective effective
internal fields for an easy axis and an easy plane. In this paper,

we consider the substrate material to be a Y-type hexaferrite
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we need to knowa priori the plane-wave solutions occurring 4
in each of the layered system. While plane-wave solutions are
obvious for an isotropic dielectric layer, plane-wave solutions
for an unbounded ferrite bulk magnetized along an arbitrary

direction are also well known [1], whose properties are sum- y X
marized in the Appendix. In general, wave propagation in a 7= 2y
magnetized ferrite is nondegenerate, assuming different effec- " = M V )j)(/ Z =24
tive permeability values for different eigenmodes, resulting in .
different propagation speeds and polarizations. . i

We have applied the transfer-matrix technique to performthe  _ 4 /% Z=2
transverse spectral-domain analysis [2], [6], [15]. A transfer z=0
matrix translates the surface impedance, which is itself a N="" m p—
2 x 2 matrix, from one layer interface to another, assuming : . "
the tangential components of the electromagnetic fields to . i
be continuous across the interfaces in the absence of circuit | _ N \%\ | Z=2y,
inhomogeneities. The outermost layers are either air or a Z=27y

metal surface of finite conductivity, defining the (imperfect)

open- or short-circuited boundaries for the layered structukgy. 1. Geometry of a stratified structure containing multiple layers. A planar
respectively. Thus, via the transfer matrices defined for tlsicuit is located at the = 0 plane.

layers, these open- and/or short-circuited surface impedances

are translated ultimately onto an interface containing a pointgyperimentally, we have fabricated a microstrip transmission
source assumed by a Green’s function and, after ImpoSifigs o, 5 v-type hexaferrite substrate exhibiting a magnetic easy
the current—_contmuny cond|t!on at the interface position, th&ane [12]. While the significance of a magnetic easy plane is
corresponding Green's function can, therefore, be solved. iscyssed in a separate paper [12], numerical calculations for
When metal patches or strips appear in the stratified strygaye hropagation along a microstrip line involving a magnetic
ture, as required by a microwave circuit, electromagnetic,q niane implied by a Y-type hexaferrite substrate follow in

solutions can be constructed via superposition of the Greepysg paper. Calculations compared reasonably well with mea-

functions. That is, electromagnetic solutions are cast in integt@)ements.
forms where Green’s functions are superposed according to an
unknown source distribution. The unknown source distribution
can then be solved numerically using the Galerkin's method
applied to an integral equation expressing the condition for II. FORMULATION
current continuity [16]. We have used current potentials to
construct the Galerkin elements and by doing so three advanwe present a general formulation that a planar microwave
tages follow [17]. Not only is the symmetry of the patch/strigircuit is embedded in a stratified structure involving dielec-
conserved in the calculations, but the vector Galerkin equéic/magnetic layers as substrates/superstrates. This is shown in
tions are also converted into scalar ones, resulting in onef@y. 1. The planar circuit is located at= 0 and there aré/
integrals for the one-dimensional (1-D) transmission-linkyers in thetz-direction andV layers in the—z-direction. We
problems and twofold integrals for the two-dimensional (2-Djenotez as the direction normal to the layered structure. The
metal-patch problems. Most importantly, the condition for cuthickness of the/th layer isd,,, M > v > —N. In Fig. 1, the
rent continuity at metal-patch/strip boundaries is automaticalyitermost surfaces are either a metal boundary of finite conduc-
satisfied, forcing the normal components of the current flow tivity o or air. The following formulation allows the boundary
vanish at the boundaries of the metal patches/strips [18]. Bgnditions at the outermost surfaces z; andz = z_ to be
using the current-potential techniques, we are able to appignslated onto the interface at= 0 containing the microwave
numerical calculations to microstrip circuitries containingircuit, admitting a 2-D analysis there. For this purpose, we have
ferrite substrates even when FMR is approached. When FNRopted the so-called transfer-matrix technique [2], [6], [15].
is approached, the underlying numerical problem becomesAlthough the present analysis considers only one single plane
defined and the Galerkin elements need to be scaled to avthidt contains the circuit inhomogeneity, the same analysis can
large truncation errors. be generalized so that more than one planar circuits may appear
As just mentioned, the resultant Galerkin elements associatédseveral layer interfaces. In Fig. 1, the resultant electromag-
with a transmission-line problem require evaluation of onefoltetic wave solutions in the presence of a vertical point dipole is
Sommerfeld-type integrals. However, due to the fixed periddrmed as the dyadic Green'’s function [16].
(27) of the sine and cosine functions, numerical integration at The transfer-matrix method is applied in the spectral domain.
infinity is less stringent than the original Sommerfeld-type inteA transfer matrix is a 4x 4 matrix and, for a given transverse
grals containing oscillations of Bessel functions at infinity [16]spectral vectok, = (k. k,)%, it correlates the tangential
As such, extrapolation schemes have been applied to evaluaimponents of the RE- andh-fields on both sides of a layer
the integrals at infinity. [see (3)]. Here, the superscriftdenotes transposition of a row



1282 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 5, MAY 2002

vector into a column vector. Thus, for tih layer the transfer by the present spectral-domain analysis or the transfer matrix

matrix can be written as techniques [see (1)].
. The tangential components of theand -fields associated
T (d)=L (z41) L (%) (D) with the ath eigenmode in thesth layer are expressed as

(Cvaz Cvay)t aNd (hyaz hoay)? in (2), respectively. The
I'-matrices and, hence, the transfer matri@s(d,) for a
ex(Zpt1) ex(2) dielectric layer and for a ferrite layer [see (2)] are given in the

with (2), shown at the bottom of this page, so that

ey(Z11) ey(2) Appendix. ThellndeX/ has been dropped in the Appendix for
=T V(d,,) . . (3) reasons of clarity.
ha(Zu41) ha () The surface impedance matr#(~») can be defined as fol-
hy(zp41) hy(z) lows:
In (2), kpa-, M > v > —N, and4 > « > 1 denotes the ez(2) hz(2)
i . : =Z(z) - (5)
z-component of the wave vector of tlegh eigenmode in the ey(2) hy(2)
vth layer satisfying o
where the dependence of the quantities in (5), 8aye,, ha,
k2 + k2 + k2. = cvativalw/c)?. (4) hy, andZ onk, andk, is understood. Thus, when a transfer

matrix is defined to translate the tangential components of the
In (4), ¢, andp,, are the dielectric constant and permeabilitiRF electromagnetic fields over one layer thickness [see (3)],
of theath eigenmode in theth layer,w is the angular frequency, the surface impedance will also be transferred according to the
c the speed of light in vacuum, and Gaussian units have bdellowing equation:
used throughout this analysis. —1
For an isotropic medium, (4) reduces to the regular dispersion ~ Z(zv+1) = [gyg(zu) +2,,} [gl,é(zu) +g,,} (6)
relation for wave propagation, arg, andu,. are all degen-

wherea b 2 C, andd are the 2x 2 partition matrices of
erate, i.e.¢r independent, denoting the permittivity and permey. svo=v =v

ability of the medium, respectively. For an anisotropic mediur; ¥ glven by

the four eigenmodes become nondegenerate, assuming different a b

values for permittivity and/or for permeability,. and /i, r, = <;" (T) ()
o = 1,2,3,4. The procedure for solving the nondegenerate svo=

dispersion relation of a gyromagnetic medium is given in the Since, except at = 0, the tangential components of the
Appendix. That is, whert,,, andk, are givenk, . is solved andh-fields are continuous across layer interfaces, the transfer
from (A5). Since (A5) is a quartic equat|0n there are four e|geﬁ]atr|ces can be multiplied together to provide an overall trans-
modes, corresponding to the four solutionsof. . Equation (4) formation relating the outermost boundaries of the structure to
then solves foy,..., denoting the effective permeability of thethe z = 0 plane. Thus, we define two overall t.ransfer matrices,
ath mode, which is used to express the electromagnetic fief@p and bottom, denoted d5, andT, respectively, as

of theath eigenmode given in (A20)—(A28). The permittivity of -1

the eigenmodes are all the same, = ¢4, « = 1,2, 3,4, where T = [EM " 'EQEJ (8)

¢4 denotes the dielectric constant of the ferrite layer. More de-

tails about the solution of the eigenmodes can be found in the 1,=L LI, ©)
Appendix as related to (A5). such that
We note in the limit of a transversely applied magnetic bias e (0F) ex(zn1)
field the coefficientsP; = P, = 0 [see (A7) and (A8)] since ¢,(0%) ey ()
en. = 0. Thus, (A5) implies two doubly degenerate eigenmode Y =T . A
pairs, as derived in [6]. It can be shown that (A5) reduces to ha(OF) | = | halem)
the corresponding equations in [6] for a transversely applied h,(0F) hy(znr)
bias field. However, if the bias field is along an arbitrary direc- e(07) ex(z_n)
tion, (Ab) predicts, in general, four nondegenerate eigenmodes. 0-
We note that FMR occurs if the coefficiet, = 0 [see (A6)]. c(07) —T . cu(z-n) _ (10)
At FMR, (A5) implies an incomplete set of eigenmodes, which hae(07) | =2 | halzon)
spans a vector space with dimensionality smaller than required h,(07) hy(z—n)

Cplx €XP Lkl/147 Cp3x €XP Lkl/34 Cpqx €XP Lkl/447

)

hoix €xXp thy1.2 huv3e €xXp thy3.2 hvax €xXp kg2

( ) ( ) (

euty exp(iki22)  epoy exp(ikuo.2)  eusy expl(ikyz.z
( ) ( ) (
( ) (thy222) (

vvvv

( )
€ty exP(thya-2)
( )
( )

Vly €xXp Lkul,. V3y €xp Lku?)zz V4y €xXp Lku4 z
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The relationship between the two column vectoragiven current distribution in the interfager’, +'), the gener-

(€x(07)e, (0T)h,(0T)h, (0))T and (e.(07)e,(07)h,(07) ated tangential electric field at= 0 is

h,(0~) )¥ is determined from the boundary conditions im- L e - - -

posed by the planar_cwcwt at,= 0, as conn_ected together by ez, y) :_2/ dkx/ dky/ dx’/ dy’

the use of the dyadic Green’s functions discussed below. We 4rc J o —o0 —oo —oo

note that while transfer matrices are multiplied together trans- - exp [thy(z — 2)] exp [iky(y — /)]

lating the tangential components of the electromagnetic f!elds - G(ks, /%‘y)i(x', y'). (15)

across layers, as described by (8) and (9), the transformation of

surface impedance defined by the functional form of (6) al§gom Ampere’s law, the Green’s function dyad is

multiplies or compounds as a consequence of the translation

process. This is indeed true since transformation of (6) is N T s

isomorphic representation of the transfer maffix under the g{k“”’ hy) = {[é(o s Ry )] [Z(07; ko, By)] }

operation of matrix multiplication. Therefore, we have . < 0 1) (16)
-1 0

-1
Z(0M) = |a Z(zpy) +Db | |c Z(zy) +d 11
0% [:t:(7M) :J [:t:(7M) :J (1D In (15), both the source poilit’ 4') and the observation point

(z y) are located at = 0. The integral equation to solve is [16],
[17]

Wheregt, b, c, andd, denotg the partition matrices associ- e, (x, y) + Zsjle, v) = E (=, v) 17)
ated with the top transfer matrix, ed,. =
Now we need to know the surface impedance of the ouihere
ermost surfaces. We consider the surface impedaf¢es )
andZ(z_y) to be those associated with either a short-circuited Zy = (1 —14)(w/8r0)"/? (18)

metal ground plane or an open-circuited half-space filled ] o
with, say, air. For a short-circuited ground plane, the surfaggnotes the surface impedangeélenotes the conductivity of the

20) = [a,26-0) 11 e, 260 44, @2

impedance can be derived as metal patch at = 0, and¥ , denotes the tapggntial component
of the electric field generated by the excitation current or the

P 1—¢ 0 1 (13) feeder-line current.
Ss 4w | o6 \ -1 0 In this paper, we consider the microstrip solutions for which

wave propagates along thyedirection without imposing to ex-

and for an open-circuited half-space ternal-current excitatiof . = 0in (17). That is, we are consid-

e ering the normal-mode solutions intrinsic to a microstrip trans-
c - -1 mission line. Under these considerations, (15) and (17) are com-
Ar  CBz €o CAz €CBz . .
Z = < ) < ) bined to yield
- €Ay €By/| _ [Ho 0 €Ay CBy
o 1 [ = . .
‘ 18 o [ [ e ikt - ]G M)
T J—oco —o0 - -

where the+(—) sign applies if the surface being considered
possesses an upward (downward) surface normal. In€18);

notes thelc/a;ep trical cqnductivity of the metal plane, én¢ Here, for clarity, we have used different symbélsnd 5 for
c(|27r,:u.a) tls E[he zkln deptth. In (14)§"b$?d“]ftﬁre the di- k., andk,, respectively. The homogeneous equations [i.e., (19)]
electric constant and magnetic permeablity of In€ open Sp?‘&?e then solved numerically, giving rise to the dispersion relation

which may differ from one if material other than air is used ”@xpressing the wave propagation consfaas a function of the
filling the half-space. The column vectoss, = (e, cay)” angular velocityw

" T ) i
andgt,?.] - (]fB“’ .eBy)d are deﬂnedC;; (A1) and (AZ)' ]:I'hus, The microstrip geometry is depicted in Fig. 2, where the metal
once the surface impedany, ) andZ(z_ ) are given from strip is of widthw, lying on thez = 0 plane, extending from

(13) and (125 provided nat Al of the transier maticzs, | 0102 = u: Folowing 16] and [17],we express the curten
M > v > —N are knowna priori [see (7) and (8)]._Nlé)te distribution in the metal strip in terms of a current ba{g%}
that the present formulation encompasses losses of all kinds, in- 00
cluding dielectric loss [see (A4) and (A15)], magnetic loss [see Jl@, y) = Z amj, (T, y) (20)
(Al4a) and (A14b)], and conductor loss [see (13) and (17)]; m=0
radiation-wave loss presents in (14) and surface-wave loss is )
inherent to the Green’s function construction contained in ti¢ere the current elementg '} are derived from current po-
transfer matriceZ, andT, [see (8) and (9)]. tentials as

Let G(k., k,) be the Green’s function dyad in the spec- 05
tral domain denoting the tangential electric field generated b!}m(x’ y) =Y, [Cos(m”/w)e' y}’ m=0,1,2....
a point-dipole source located at the= 0 interface. That is, for (21)

- Z,j(xz) =0. (19)
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z . RESULTS

Similar to the original Sommerfeld integrals, surface modes
X appear, due to poles in the integrand of (22). We note that the

lateral strip-resonant modes, occurringcat +mmx and+n,

are actually not poles of the integrand since, at these wave hum-

bers, the numerator of the integrand also vanishes, appearing as

70 —» first-order zeros. The same results occur for other metal patch
Supstrate (Ferrite) I d geometries, as illustrated in [16] and [17]. Numerical techniques

evaluating Sommerfeld-type integrals are discussed in [16] and

Fig. 2. Geometry of the microstrip line fabricated on a Y-type hexaferritL;]J]’ and_mOSt teChmques still apl?'y_ h_ere' Howe_ver' du_e to the

substrate. fixed period of the integrand at infinity, sags, integration

of these integrands can be carried out using an extrapolation

Here, V, denotes the two-dimensional transverse gradieﬁ@heme-

operator. Note that the normal components of the current ele.Due to losses of various kinds, surface poles are pushed off
ments vanish at the microstrip edges, as required by the curgfn the realk-axis, allowing the integrals to be evaluated
continuity equation [18]. By using the Galerkin’s method thaumerically. However, sharp cancellation occurs near surface

Yy
x=0 xX=w
¥

{

[l |

Galerkin elements associated with (19) are poles and the integration processes need to be handled with
care [16], [17]. In performing numerical integrations, we
1 “ O ike—a) s (ot define a cutoff for the wavenumbér Integration from—cutoff
Amn _5/_00 dk/o dx/o da’ ™ )Jﬂ(x) to +cutoff is accomplished using the implicit fifth-order
) wo ) Runge—Kutta method, which is able to monitor local truncation
- G(k, B)j () +ZS/ Az ()74 () errors to adaptively adjust step size to ensure the overall
1 2 Om 9 integration accuracy [19]. Integrations fromcc to —cutoff
= dk { (—) (—) Gu and from cutoff toxo are then evaluated using the extrapolation
2 J_ oo w w " . 1/2 .
) scheme. Initial value for cutoff is set to be 1Q0/c)e/~. This
+8k [(M) Gy + (”_W) G21:| cutoff value is then doubled to check the overall accuracy. This
w w process continues until the required tolerance is met.
+/32k2G22} Calculations of Galerkin elements have been carried out
retaining six significant digits when outside the FMR region.
[ei(kw+m7r) + 1] [_e—i(kw+mr) + 1] When FMR is approached, the Galer_kin matrix becomes ill
[kQ — (mﬂ/w)Q] [kQ — (mr/w)Q] beh_aved. er have to scale the ma_trlx elements properly to
5 avoid numerical underflow and to avoid large truncation errors.
Y [(@) +/32} Z. (22) FMR region is defined fowkx < w < wrnar, andwg and
2 w wrmARr are the Kittel frequency and ferromagnetic antiresonant

wheres,,,,, denotes the delta—Kronecker function and the dag
+ denotes adjoint operation. By setting the determinant of t :
Galerkin matrix(A4,,.,,) into 0, the dispersion relation for wave nce thle Wavt(:]nuTbeg IS sotlvled as(,j thetr:owestero of the i
propagation is determined, expressing the propagation constggfnvalues, the iundamental mode, the unknown curren

£ as a function of the angular velocity. In calculating the expansion coefficient, m Q’ 1.2,3, ... [see (20)] are
. . . . determined as the associated eigenvector.
Galerkin elements, twofold integrations have been carried ou A . .
Impedance of a transmission line supporting TEM-like wave

e_malyucally_ and itis only required to evaluate a onefold mtegr%_ropagation can be defined as
tion numerically [see (22)].

By employing the current potentials, the Galerkin equation
has been reduced from vector form (19) to scalar form (22).

Symmetry retains in the calculations for Galerkin elements. Fori1 Vis th it q h ral duct q
example, in isotropic media, the left—right symmetry of the miynerev is the voltage drop across the central conductor an

crostrip geometry implies that we need only to evaluate eveg]r_ound plane an(_I IS th_e gurrent flowlng_at the central con-
numbered elements, i.en andn are even numbers in (22)_ductor. For the microstrip line shown in Fig. 2can be calcu-
Also, integration fof: from —oo to 0 in (22) is the same as from lated as

0 to oo since wave propagation is reciprocal due to the mirror woo .

symmetry of the circuit. However, in an anisotropic medium, I'= /0 dzjy =ifao (24)
say, a ferrite, the presence of a bias magnetic field removes these

symmetries. As a result, microstrip currents are shifted onto ofgd V" can be calculated from

side of the metal strip, known as the field displacement effect - w - T

in the literature [1]. Wave propagation becomes nonreciprogal i/ dk/ dx’/ dpe*@==") <1>

since the mirror symmetry no longer holds due to the presence 27 J— 0 w 0

of the bias magnetic field or the anisotropy field. ‘G(k, B) ("), (25)

gquency given by [12, egs. (7) and (8)], respectively. In the
%Ilowing calculations, we have used 20 Galerkin elements.

Zn =V/I (23)
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From (23), we obtain
1 & Am g R T mary 2 — Longitudinal
Zp = _;::0<_)/ dk [(?) G +/3kG12} .

aop — o r 4
\Ew/% .
/\ _,._./\-/'

-5 Transverse

1— C—i(kw—rnﬂ')
B = (majw)?

In (25), in calculating the voltage drop, we have chosen the in-
tegration path to be along < = < oo andz = 0. As can be

(26)

Current (Relative)
O

verified from Faraday’s law, this voltage drop is independent of | Hy=5KCe

the integration path connecting the central conductor with the f=20GHz . .
ground plane so long as the longitudinal component of the RF B 0 02 04 06 08 1
h-field is negligible comparing to the transverse components, Position (Relative)

i.e., hy, < h, orh.. Otherwise, the concept of line impedance
does not make much sense. Here, we also assume the strifigis3. Calculated current profile for the longitudinal and transverse
made of good conductor so that voltage drop across the mé&eapronents across the strip width of the fabricated microstrip line.

strip is negligible. It can be proven that, for a transmission line 0
supporting TEM-like waves, the definition for line impedance ;:':. o
[see (23)] is equivalent to ok /" Ao
Zy, =2P/I*I (27) g ol
whereP is the power delivered by the transmission line. é Ca‘C
Under transmission measurement, a transmission line of 2 S0
length ¢, impedanceZ, and wave propagation constghtis 2 Meag
connected with probes at two ends of standard impedZpee g 40r
509, or Z, = 4x /¢, which is expressed in Gaussian unit. The st
transmission coefficient is sy f2 20 GHz
= bo L2 . . (28) -60 N ;
27,21 cos BL — i( 22 + 73 ) sin AL el P (KOe)
and the reflection coefficient is Fig. 4. Calculated and measured transmission amplitude at 20 GHz, plotted as
— (Z(QJ _ Z%) sin 8L a function of the external bias field.
p= . - (29
27,2y, cos L — i( 22 + 2} ) sin AL /n/
Experimentally, we have fabricated a microstrip transmis- 180 f '/
sion line using a single-crystal Y-type hexaferrite as the sub- m
strate material [12]. The composition of the substrate material =4 \
is BaaMgZnFe »O,, and the easy plane coincides with the sub- S —
strate surfaces, i.e., the-plane. The hexaferrite substrate ma- @ Or / Meas.
terial was characterized using a vibrating sample magnetometer g
(VSM) to show a saturation magnetizatianMs = 2.86 kg, [
and an anisotropy field, = 7.94 kOe. The fabricated mi- Calc.
crostrip line is characterized by the following parameters: thick- g0 | T=20GHZ
nessd = 0.010 in, width w = 0.0051 in, length? = 4 mm, and 0 : 4 6

dielectric constant; = 18. The dielectric loss tangenin ¢
was assumed to be 0.01 and FMR linewidilif = 100 Oe.
Other properties of the fabricated microstrip line, as well @%y. 5. cCalculated and measured transmission phase at 20 GHz, plotted as a
measurements, can be found in [12]. function of the external bias field.

Fig. 3 shows the calculated current profile of the longitudinal
currentj, (x) and the transverse currefif{z) plotted over the  Figs. 4 and 5 plot the calculated and measured transmission
width of the metal strip, assuming the external fielgd = 5 kOe, coefficient for the amplitude and phase, respectively, assuming
and the frequency = 20 GHz. It is seen in Fig. 3 that currentthe frequencyf = 20 GHz. In Fig. 4, the measured insertion
distribution is slightly asymmetric with respect to the center déss is larger than calculated even outside the FMR region. Rea-
the strip, showing the field displacement effect due to the presons for this may be that the dielectric loss tangent and FMR
ence of a bias magnetic field. Longitudinal currents are crowdédewidth assumed by the calculations are smaller than their
at the edges of the strip at which positions the transverse curraatual values, corresponding to electric and magnetic losses,
vanishes, as expected. respectively. Other losses, for example, discontinuity resulted

External Field (KOe)
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from the coax-microstrip adapters employed under transmission APPENDIX

measurements, may also partially explain the discrepancy. Di_S'For clarity, the layer index is dropped in the following

crepancy between theory and calculations in the FMR region Rcussion. For an isotropic dielectric medium, the four eigen-
even bigger due to the difficulty in obtaining good numeric é)des are degenerate so thate c — ¢ — 6,4 O
accuracy in that region. Also, the impedance value caIcuIate1 — Jia = jis = jug = 1. Here,e, denotes the dielectric con-

by using (26) may not be ad_equz_;\te in the FMR region smce,épam of the medium. The longitudinal wave propagation con-
large extent, wave propagation is no more TM-like. Measurgt-amkz can thus be calculated from (4) for = 1,2, 3, and

ments show that wave propagation in the fabricated micrOStﬂPDenote the azimuthal and polar angles of the column vector
line is roughly reciprocal, especially when outside the FMR e _ (ks k, k.)T as¢ andd, respectively. We define two
- €T Y z y .

glon. - : i column vectors
The calculated transmission phase basically confirms mea-

surements (Fig. 5) showing a resonant structure when FMR T

comes across. Of special notice, it is seen in Fig. 5 that phage. = (1— (1—COS 6) cos? ¢— (1 —cos 6) sin ¢ cos ¢) (A1)

shift occurs linearly in the low field region prior to FMR, sug-

gesting that a transmission line involving Y-type hexaferrite mae 5 = (— (1 —cos 6) sin ¢ cos p1— (1 —cos 9) sin® )7 (A2)
terial is a superior candidate for phase shifters, especially at

high frequencies. For a Y-type hexaferrite material, the cryfom which thel-matrix [see (2)] can be written as shown in
talline anisotropy can be effectively used to substitute, at lega3) at the bottom of this page. In (A3), we have defined the
partially, the bias field requirement. For example, in the absenggye impedance of the medium és= 6;1/2_ In order to take

of a material anisotropy, an external field in the order of 7 kOejsto account dielectric loss, the dielectric constanshall be
required to effectively change the phase of a microwave sighaplaced by a complex number whose imaginary part is propor-

at 20 GHz. Similarly, an M-type hexaferrite can also providgona| to the dielectric loss tangent of the meditem 6,
an internal field along the easy axis, thereby alleviating the bias

field requirement. However, in using an M-type hexaferrite, it
is inevitable to introduce a demagnetizing field in the order of
47 M, [see (Al4a)] and, hence, it is not favorable for practical ) ) ) L
applications, at least as phase shifters. M-type hexaferrite havE0" @ ferrite medium biased by a dc magnetic field along an

been practically used to fabricate self-biased circulators at nﬁir_bn_rary direction, the four eigenmodes for wave propagation
limeter-wave frequencies [7]. are, in general, nondegenerate [1]. Instead of using (4), the lon-

gitudinal wave numbek. can now be solved from the following
guartic equation:

€q — Gd(l + itan (5(1) (A4)

IV. CONCLUSIONS

We conclude that Green's function calculations utilizing Pik + Pyk® + Pok® + Pk + P, = 0 (A5)
the current-potential technique provide sufficient accuracy in
calculating a layered structure containing anisotropic ferrite . - .
substrates/superstrates magnetized along an arbitrary direct%rﬁ?re the polynomial coefiicients are given by
Our calculations are applicable even when the region of FMR

is approached. The formulation may be generalized to includg: =w> — w’+ (Giﬁeiy)wowm (AB)
circuit inhomogeneities at multiple interfaces. For a transmis-
sion-line like geometry, the calculations are 1-D, and for & = —2e¢,. (emkarenyky)wowm (A7)

antenna-patch-like geometry the calculations are 2-D. How-
ever, if the finite lateral dimension is considered important, ong, = —2(k§—k§ —ki) (w§+wowm—w2)
needs to revert to a full-wave three-dimensional (3-D) analysis

2
invoking generic numerical routines for finite-element and - [kf—efm (kf—ki—ki)—|—(emkm+enyky) }wowm
finite-difference calculations. The fit between our calculated
and measured phase shift and amplitude as a function of the — — (eim+eﬁy)k§wgl (A8)

bias field is reasonable in view of the fact that there were no

adjustablg parameters. All parameters useq in th_e calculatlojlq>? —%,,. (em Ky t-Cny ky)wm k2w -+ (/ff— K2 ki) w,
were obtained directly from measurements, including dc, VSM,

and FMR measurements [12]. (A9)

Cearexp(ik.z) C(earexp(—ik.z) C(epgexp(ik,z) (epyexp(—ik.z)
Ceayexp(tk.z)  (eayexp(—ik.z) (th.z) (epyexp(—ik.z)

epsexp(tk.z) —epyexp(—ik.z

1=

(2) = (A3)

CAx eXp(—ikzz)

( ) (k=2)
epyexp(ik.z) —epyexp(—ik.z) —eayexp(ik.z) eayexp(—ik.z)
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where the primed fields are those expressed in a coordinate
frame whosez-axis coincides with the internal dc-bias field di-
rection [1]

P, = (kg—kg—kg) { (kg—kg—kg) (w§+wowm—w2)

+ |:k§ + (enwk“” +Gny/€y)2:| Wolm

2 , . s
32 L (ennbibenyy) K W =Gl (1= o) + Hpofosbon (420
(A10) Py = (—iw/V)ftata1 a2 — Hj (1 - Naé?ﬁ)
Here,e,, = (cnz cny cnz)? denotes the unit vector along the — 47 M, [1 + pa3s/ (1 — Noz):| (A21)

internal dc-bias field direction

h’iyz = éoz?)uoz (_iw/’y)éal + [Hlln + 47TM5/(1 - Na)] éa?
ko =% (w/e) (A11) { ( Azi)
Wy = ATy M, A12 ) )
! B2 = —Cotaa[HEy+ 4mML (1 = o)/ = )] (A23)
wo =vHj,. (A13)

, . o Chy = Cabas|(—iw/7) + 4nMypiabaréaz/(1 — )| (A24)
w is the angular frequency, is the gyromagnetic ratia; is the

speed of light in vacuum; is the dielectric constant of the . :Ca{Hilnéal + (iw/7)éaz + AT Myéay
ferrite, 4w M, is the saturation magnetization, a#l], is the

effective internal bias magnetic field given by L+ paéla /(1 — ua)]} (A25)
H! =H,—4rM,N.+H,—iAH foran easy axis  (Al4a) Var =hos + (—iw/7)(1 = pa) +dnMspaéaréaz (A26)
Hl,=[H,(H,+H,)]"/>~iAH for an easy plane (A14b)  Un, =hby, + Hin(1 — o) + 4w M, (1 - uaé(Qn) (A27)
Here, H, denotes the externally applied dc magnetic field an(@fﬁw =l (A28)

AH isthe FMR linewidth. In (Al4a), the easy axis occurs along

the z-axis and the anisotropy field is denoted s, [12, eq. Here.é, = (éa1 a2 éa3)” denotes the unit vector along the
(10)]. In (Al4b), the easy plane lies on thg-plane and the Wave propagation directiok , = (k. k, k..)*, and(. =
anisotropy field isH 4 [12, eq. (6)]. For practical applications, (1« /s)"/? is the wave impedance. We note that for each mode
H, is applied along the easy-axis direction (thexis) or along @ the three vectors ,, b, andk , are mutually perpendicular

a direction lying on the easy plane (the-plane). For the case t0 €ach other, as dictated by Maxwell equations. Adspis per-

of an easy axis, the demagnetizing figldM, N. needs to be Pendiculartd ., as can be readily verified. In (A17)—~(A19), the
subtracted from the total field, as expressed in (Al4a). Hére, coordinate transformation matrl is given by (A29), shown at
denotes the axial demagnetizing factor, which may be estimatgg top of the following page, artél and® denote the polar and
from a static calculation [7]. For cubic ferrites (e.g., garnets), tigimuthal angles along the internal bias field direction. That is,
anisotropy field is small, and the total internal effective fielde, = (sin© cos @, sin © sin @, cos ©)"". Therefore, wher ,,
H!_is given by (Al4a) assumingl, is negligible. Magnetic 1o, andk,, o = 1,2,3,4, are known from (AS), and from
loss is accounted for by the termiAH in (Al4a) and (Al4b), (A17)—(A29), thel’-matrix of the ferrite layer can then be calcu-
and dielectric loss can be included by using the following conf@ted using (2). Th&-matrix can be calculated from thiema-
plex dielectric constant: trix by using (1).
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