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Abstract—Numerical calculations have been applied to a mi-
crostrip line fabricated on a Y-type hexaferrite substrate using the
Green’s function technique. The formulation allows the ferrite sub-
strate to be magnetized along an arbitrary direction. Current po-
tentials have been used to construct the Galerkin elements and the
resultant calculational scheme is applicable even when ferrimag-
netic resonance is approached. Calculations compared reasonably
well with measurements.

Index Terms—Arbitrary magnetic bias, calculations near ferro-
magnetic, current-potential method, dyadic Green’s function, fer-
rite substrate, microstrip line, Sommerfeld integral, transfer-ma-
trix method.

I. INTRODUCTION

A NISOTROPIC substrates, due to either the process in
material preparation or crystalline asymmetry, have

been used in the fabrication of microwave integrated circuits
(MICs). Electromagnetic wave propagation in a ferrite sub-
strate is also anisotropic in the presence of a dc-bias magnetic
field, called the gyromagnetic effect. For the former case, the
dielectric properties for wave propagation in the substrate can
be described in terms of a permittivity tensor of rank 2 and,
for the latter case, Polder permeability tensor results under
the small-signal approximations [1]. While many authors
have applied numerical calculations to microwave circuitries
containing anisotropic substrates [2]–[6], in this paper, we
consider wave propagation in a gyromagnetic substrate. We
specifically consider the electromagnetic wave propagation
in a microstrip transmission line in which the metal strip is
fabricated on top of a hexaferrite substrate for which the bias
magnetic field can be applied along an arbitrary direction. The
formulation contained in this paper is applicable to a general
stratified dielectric/magnetic structure containing circuit inho-
mogeneities at the interfaces. A Green’s function approach is
adopted in the following analysis.

In contrast to the permittivity tensor, Polder tensor elements
are usually frequency dependent and exhibit strong resonance
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behavior with frequency and the bias magnetic field. For ex-
ample, the effective permeability for wave propagation for fre-
quencies around ferromagnetic resonance (FMR) varies from a
very large positive number to a very small negative number en-
compassing the value zero, accompanied by a nonzero imagi-
nary part accounting for magnetic loss [1]. Most useful magnetic
microwave devices operate near FMR so that the rapid change
in magnetic permeability can be effectively utilized either to ob-
tain frequency-tuning capability or to remove the degeneracy
between modes, thereby inducing nonreciprocity in wave prop-
agation [7]. For example, ferrite phase shifters [8], resonators
[9], and filters [1] are constructed according to the first principle
[7], and circulators and isolators according to the second [10].
Most calculations in the past have been formulated for frequen-
cies away from FMR in order to avoid numerical difficulties. In
this paper, numerical solutions near FMR have been attempted.
This was possible for us because we introduced techniques for
current potentials to be discussed here.

Before solving the ac electromagnetic problem associated
with a ferrite substrate, one is required to solve the dc equilib-
rium problem first in order to calculate the demagnetizing field
due to the finite geometry of the substrate [7]. In a cubic-ferrite
sample material, anisotropy is usually not important since it is
small in comparison to the external bias field. In a hexaferrite
substrate, the internal anisotropy field can be as large as 50
kOe and, hence, it can no longer be neglected [11]. Actually,
hexaferrites are purposely introduced to alleviate [12], or even
eliminate [13], the external bias field requirement at high
frequencies. In a hexaferrite material, magnetic anisotropy
appears in the form of an easy axis or an easy plane. For an
M-type hexaferrite, the-axis is an easy axis of magnetization,
and the magnetization vector prefers to be aligned along the
-axis so as to lower its free energy [7]. For a Y-type hexafer-

rite, the -plane is an easy plane, and the magnetization vector
is energetically favorable to be aligned in the-plane [12].
Equations (A14a) and (A14b) describe the respective effective
internal fields for an easy axis and an easy plane. In this paper,
we consider the substrate material to be a Y-type hexaferrite
whose effective field [see (A14b)] is derived elsewhere [12].

For a given geometry, electromagnetic wave solutions arising
from a point source satisfying the required (homogeneous)
boundary conditions are termed Green’s functions [14]. In
Section II, we formulate the Green’s functions of a general
stratified structure containing magnetic and dielectric layers
using a transverse spectral-domain analysis. For this purpose,
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we need to knowa priori the plane-wave solutions occurring
in each of the layered system. While plane-wave solutions are
obvious for an isotropic dielectric layer, plane-wave solutions
for an unbounded ferrite bulk magnetized along an arbitrary
direction are also well known [1], whose properties are sum-
marized in the Appendix. In general, wave propagation in a
magnetized ferrite is nondegenerate, assuming different effec-
tive permeability values for different eigenmodes, resulting in
different propagation speeds and polarizations.

We have applied the transfer-matrix technique to perform the
transverse spectral-domain analysis [2], [6], [15]. A transfer
matrix translates the surface impedance, which is itself a
2 2 matrix, from one layer interface to another, assuming
the tangential components of the electromagnetic fields to
be continuous across the interfaces in the absence of circuit
inhomogeneities. The outermost layers are either air or a
metal surface of finite conductivity, defining the (imperfect)
open- or short-circuited boundaries for the layered structure,
respectively. Thus, via the transfer matrices defined for the
layers, these open- and/or short-circuited surface impedances
are translated ultimately onto an interface containing a point
source assumed by a Green’s function and, after imposing
the current-continuity condition at the interface position, the
corresponding Green’s function can, therefore, be solved.

When metal patches or strips appear in the stratified struc-
ture, as required by a microwave circuit, electromagnetic
solutions can be constructed via superposition of the Green’s
functions. That is, electromagnetic solutions are cast in integral
forms where Green’s functions are superposed according to an
unknown source distribution. The unknown source distribution
can then be solved numerically using the Galerkin’s method
applied to an integral equation expressing the condition for
current continuity [16]. We have used current potentials to
construct the Galerkin elements and by doing so three advan-
tages follow [17]. Not only is the symmetry of the patch/strip
conserved in the calculations, but the vector Galerkin equa-
tions are also converted into scalar ones, resulting in onefold
integrals for the one-dimensional (1-D) transmission-line
problems and twofold integrals for the two-dimensional (2-D)
metal-patch problems. Most importantly, the condition for cur-
rent continuity at metal-patch/strip boundaries is automatically
satisfied, forcing the normal components of the current flow to
vanish at the boundaries of the metal patches/strips [18]. By
using the current-potential techniques, we are able to apply
numerical calculations to microstrip circuitries containing
ferrite substrates even when FMR is approached. When FMR
is approached, the underlying numerical problem becomes ill
defined and the Galerkin elements need to be scaled to avoid
large truncation errors.

As just mentioned, the resultant Galerkin elements associated
with a transmission-line problem require evaluation of onefold
Sommerfeld-type integrals. However, due to the fixed period

of the sine and cosine functions, numerical integration at
infinity is less stringent than the original Sommerfeld-type inte-
grals containing oscillations of Bessel functions at infinity [16].
As such, extrapolation schemes have been applied to evaluate
the integrals at infinity.

Fig. 1. Geometry of a stratified structure containing multiple layers. A planar
circuit is located at thez = 0 plane.

Experimentally, we have fabricated a microstrip transmission
line on a Y-type hexaferrite substrate exhibiting a magnetic easy
plane [12]. While the significance of a magnetic easy plane is
discussed in a separate paper [12], numerical calculations for
wave propagation along a microstrip line involving a magnetic
easy plane implied by a Y-type hexaferrite substrate follow in
this paper. Calculations compared reasonably well with mea-
surements.

II. FORMULATION

We present a general formulation that a planar microwave
circuit is embedded in a stratified structure involving dielec-
tric/magnetic layers as substrates/superstrates. This is shown in
Fig. 1. The planar circuit is located at and there are
layers in the -direction and layers in the -direction. We
denote as the direction normal to the layered structure. The
thickness of the th layer is , . In Fig. 1, the
outermost surfaces are either a metal boundary of finite conduc-
tivity or air. The following formulation allows the boundary
conditions at the outermost surfaces and to be
translated onto the interface at containing the microwave
circuit, admitting a 2-D analysis there. For this purpose, we have
adopted the so-called transfer-matrix technique [2], [6], [15].
Although the present analysis considers only one single plane
that contains the circuit inhomogeneity, the same analysis can
be generalized so that more than one planar circuits may appear
at several layer interfaces. In Fig. 1, the resultant electromag-
netic wave solutions in the presence of a vertical point dipole is
termed as the dyadic Green’s function [16].

The transfer-matrix method is applied in the spectral domain.
A transfer matrix is a 4 4 matrix and, for a given transverse
spectral vector , it correlates the tangential
components of the RF- and -fields on both sides of a layer
[see (3)]. Here, the superscriptdenotes transposition of a row
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vector into a column vector. Thus, for theth layer the transfer
matrix can be written as

(1)

with (2), shown at the bottom of this page, so that

(3)

In (2), , , and denotes the
-component of the wave vector of theth eigenmode in the
th layer satisfying

(4)

In (4), and are the dielectric constant and permeability
of the th eigenmode in theth layer, is the angular frequency,

the speed of light in vacuum, and Gaussian units have been
used throughout this analysis.

For an isotropic medium, (4) reduces to the regular dispersion
relation for wave propagation, and and are all degen-
erate, i.e., independent, denoting the permittivity and perme-
ability of the medium, respectively. For an anisotropic medium,
the four eigenmodes become nondegenerate, assuming different
values for permittivity and/or for permeability and ,

. The procedure for solving the nondegenerate
dispersion relation of a gyromagnetic medium is given in the
Appendix. That is, when , and are given, is solved
from (A5). Since (A5) is a quartic equation, there are four eigen-
modes, corresponding to the four solutions of . Equation (4)
then solves for , denoting the effective permeability of the

th mode, which is used to express the electromagnetic fields
of the th eigenmode given in (A20)–(A28). The permittivity of
the eigenmodes are all the same, , , where

denotes the dielectric constant of the ferrite layer. More de-
tails about the solution of the eigenmodes can be found in the
Appendix as related to (A5).

We note in the limit of a transversely applied magnetic bias
field the coefficients [see (A7) and (A8)] since

. Thus, (A5) implies two doubly degenerate eigenmode
pairs, as derived in [6]. It can be shown that (A5) reduces to
the corresponding equations in [6] for a transversely applied
bias field. However, if the bias field is along an arbitrary direc-
tion, (A5) predicts, in general, four nondegenerate eigenmodes.
We note that FMR occurs if the coefficient [see (A6)].
At FMR, (A5) implies an incomplete set of eigenmodes, which
spans a vector space with dimensionality smaller than required

by the present spectral-domain analysis or the transfer matrix
techniques [see (1)].

The tangential components of theand -fields associated
with the th eigenmode in the th layer are expressed as

and in (2), respectively. The
-matrices and, hence, the transfer matrices for a

dielectric layer and for a ferrite layer [see (2)] are given in the
Appendix. The index has been dropped in the Appendix for
reasons of clarity.

The surface impedance matrix can be defined as fol-
lows:

(5)

where the dependence of the quantities in (5), say,, , ,
, and on and is understood. Thus, when a transfer

matrix is defined to translate the tangential components of the
RF electromagnetic fields over one layer thickness [see (3)],
the surface impedance will also be transferred according to the
following equation:

(6)

where , , , and are the 2 2 partition matrices of
given by

(7)

Since, except at , the tangential components of the-
and -fields are continuous across layer interfaces, the transfer
matrices can be multiplied together to provide an overall trans-
formation relating the outermost boundaries of the structure to
the plane. Thus, we define two overall transfer matrices,
top and bottom, denoted as and , respectively, as

(8)

(9)

such that

(10)

(2)
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The relationship between the two column vectors
and

is determined from the boundary conditions im-
posed by the planar circuit at , as connected together by
the use of the dyadic Green’s functions discussed below. We
note that while transfer matrices are multiplied together trans-
lating the tangential components of the electromagnetic fields
across layers, as described by (8) and (9), the transformation of
surface impedance defined by the functional form of (6) also
multiplies or compounds as a consequence of the translation
process. This is indeed true since transformation of (6) is an
isomorphic representation of the transfer matrix under the
operation of matrix multiplication. Therefore, we have

(11)

(12)

where , , , and denote the partition matrices associ-
ated with the top transfer matrix, e.g., .

Now we need to know the surface impedance of the out-
ermost surfaces. We consider the surface impedances
and to be those associated with either a short-circuited
metal ground plane or an open-circuited half-space filled
with, say, air. For a short-circuited ground plane, the surface
impedance can be derived as

(13)

and for an open-circuited half-space

(14)
where the sign applies if the surface being considered
possesses an upward (downward) surface normal. In (13),de-
notes the electrical conductivity of the metal plane, and

is the skin depth. In (14), and are the di-
electric constant and magnetic permeability of the open space,
which may differ from one if material other than air is used in
filling the half-space. The column vectors
and are defined in (A1) and (A2). Thus,
once the surface impedances and are given from
(13) or (14). and can then be calculated from
(11) and (12) provided that all of the transfer matrices,

are knowna priori [see (7) and (8)]. Note
that the present formulation encompasses losses of all kinds, in-
cluding dielectric loss [see (A4) and (A15)], magnetic loss [see
(A14a) and (A14b)], and conductor loss [see (13) and (17)];
radiation-wave loss presents in (14) and surface-wave loss is
inherent to the Green’s function construction contained in the
transfer matrices and [see (8) and (9)].

Let be the Green’s function dyad in the spec-
tral domain denoting the tangential electric field generated by
a point-dipole source located at the interface. That is, for

a given current distribution in the interface , the gener-
ated tangential electric field at is

(15)

From Ampere’s law, the Green’s function dyad is

(16)

In (15), both the source point and the observation point
are located at . The integral equation to solve is [16],

[17]

(17)

where

(18)

denotes the surface impedance,denotes the conductivity of the
metal patch at , and denotes the tangential component
of the electric field generated by the excitation current or the
feeder-line current.

In this paper, we consider the microstrip solutions for which
wave propagates along the-direction without imposing to ex-
ternal-current excitation in (17). That is, we are consid-
ering the normal-mode solutions intrinsic to a microstrip trans-
mission line. Under these considerations, (15) and (17) are com-
bined to yield

(19)

Here, for clarity, we have used different symbolsand for
and , respectively. The homogeneous equations [i.e., (19)]

are then solved numerically, giving rise to the dispersion relation
expressing the wave propagation constantas a function of the
angular velocity .

The microstrip geometry is depicted in Fig. 2, where the metal
strip is of width , lying on the plane, extending from

to . Following [16] and [17], we express the current
distribution in the metal strip in terms of a current basis

(20)

where the current elements are derived from current po-
tentials as

(21)
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Fig. 2. Geometry of the microstrip line fabricated on a Y-type hexaferrite
substrate.

Here, denotes the two-dimensional transverse gradient
operator. Note that the normal components of the current ele-
ments vanish at the microstrip edges, as required by the current
continuity equation [18]. By using the Galerkin’s method the
Galerkin elements associated with (19) are

(22)

where denotes the delta–Kronecker function and the dagger
denotes adjoint operation. By setting the determinant of the

Galerkin matrix into 0, the dispersion relation for wave
propagation is determined, expressing the propagation constant

as a function of the angular velocity. In calculating the
Galerkin elements, twofold integrations have been carried out
analytically and it is only required to evaluate a onefold integra-
tion numerically [see (22)].

By employing the current potentials, the Galerkin equation
has been reduced from vector form (19) to scalar form (22).
Symmetry retains in the calculations for Galerkin elements. For
example, in isotropic media, the left–right symmetry of the mi-
crostrip geometry implies that we need only to evaluate even-
numbered elements, i.e., and are even numbers in (22).
Also, integration for from to 0 in (22) is the same as from
0 to since wave propagation is reciprocal due to the mirror
symmetry of the circuit. However, in an anisotropic medium,
say, a ferrite, the presence of a bias magnetic field removes these
symmetries. As a result, microstrip currents are shifted onto one
side of the metal strip, known as the field displacement effect
in the literature [1]. Wave propagation becomes nonreciprocal
since the mirror symmetry no longer holds due to the presence
of the bias magnetic field or the anisotropy field.

III. RESULTS

Similar to the original Sommerfeld integrals, surface modes
appear, due to poles in the integrand of (22). We note that the
lateral strip-resonant modes, occurring at and ,
are actually not poles of the integrand since, at these wave num-
bers, the numerator of the integrand also vanishes, appearing as
first-order zeros. The same results occur for other metal patch
geometries, as illustrated in [16] and [17]. Numerical techniques
evaluating Sommerfeld-type integrals are discussed in [16] and
[17], and most techniques still apply here. However, due to the
fixed period of the integrand at infinity, say, , integration
of these integrands can be carried out using an extrapolation
scheme.

Due to losses of various kinds, surface poles are pushed off
from the real -axis, allowing the integrals to be evaluated
numerically. However, sharp cancellation occurs near surface
poles and the integration processes need to be handled with
care [16], [17]. In performing numerical integrations, we
define a cutoff for the wavenumber. Integration from cutoff
to cutoff is accomplished using the implicit fifth-order
Runge–Kutta method, which is able to monitor local truncation
errors to adaptively adjust step size to ensure the overall
integration accuracy [19]. Integrations from to cutoff
and from cutoff to are then evaluated using the extrapolation
scheme. Initial value for cutoff is set to be 100 . This
cutoff value is then doubled to check the overall accuracy. This
process continues until the required tolerance is met.

Calculations of Galerkin elements have been carried out
retaining six significant digits when outside the FMR region.
When FMR is approached, the Galerkin matrix becomes ill
behaved. We have to scale the matrix elements properly to
avoid numerical underflow and to avoid large truncation errors.
FMR region is defined for , and and

are the Kittel frequency and ferromagnetic antiresonant
frequency given by [12, eqs. (7) and (8)], respectively. In the
following calculations, we have used 20 Galerkin elements.
Once the wavenumber is solved as the lowest zero of the
eigenvalues, the fundamental mode, the unknown current
expansion coefficient , [see (20)] are
determined as the associated eigenvector.

Impedance of a transmission line supporting TEM-like wave
propagation can be defined as

(23)

where is the voltage drop across the central conductor and
ground plane and is the current flowing at the central con-
ductor. For the microstrip line shown in Fig. 2,can be calcu-
lated as

(24)

and can be calculated from

(25)
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From (23), we obtain

(26)

In (25), in calculating the voltage drop, we have chosen the in-
tegration path to be along and . As can be
verified from Faraday’s law, this voltage drop is independent of
the integration path connecting the central conductor with the
ground plane so long as the longitudinal component of the RF

-field is negligible comparing to the transverse components,
i.e., or . Otherwise, the concept of line impedance
does not make much sense. Here, we also assume the strip is
made of good conductor so that voltage drop across the metal
strip is negligible. It can be proven that, for a transmission line
supporting TEM-like waves, the definition for line impedance
[see (23)] is equivalent to

(27)

where is the power delivered by the transmission line.
Under transmission measurement, a transmission line of

length , impedance , and wave propagation constantis
connected with probes at two ends of standard impedance
50 , or , which is expressed in Gaussian unit. The
transmission coefficient is

(28)

and the reflection coefficient is

(29)

Experimentally, we have fabricated a microstrip transmis-
sion line using a single-crystal Y-type hexaferrite as the sub-
strate material [12]. The composition of the substrate material
is Ba MgZnFe O and the easy plane coincides with the sub-
strate surfaces, i.e., the -plane. The hexaferrite substrate ma-
terial was characterized using a vibrating sample magnetometer
(VSM) to show a saturation magnetization kg,
and an anisotropy field 7.94 kOe. The fabricated mi-
crostrip line is characterized by the following parameters: thick-
ness in, width in, length mm, and
dielectric constant . The dielectric loss tangent
was assumed to be 0.01 and FMR linewidth Oe.
Other properties of the fabricated microstrip line, as well as
measurements, can be found in [12].

Fig. 3 shows the calculated current profile of the longitudinal
current and the transverse current plotted over the
width of the metal strip, assuming the external field 5 kOe,
and the frequency 20 GHz. It is seen in Fig. 3 that current
distribution is slightly asymmetric with respect to the center of
the strip, showing the field displacement effect due to the pres-
ence of a bias magnetic field. Longitudinal currents are crowded
at the edges of the strip at which positions the transverse current
vanishes, as expected.

Fig. 3. Calculated current profile for the longitudinal and transverse
components across the strip width of the fabricated microstrip line.

Fig. 4. Calculated and measured transmission amplitude at 20 GHz, plotted as
a function of the external bias field.

Fig. 5. Calculated and measured transmission phase at 20 GHz, plotted as a
function of the external bias field.

Figs. 4 and 5 plot the calculated and measured transmission
coefficient for the amplitude and phase, respectively, assuming
the frequency GHz. In Fig. 4, the measured insertion
loss is larger than calculated even outside the FMR region. Rea-
sons for this may be that the dielectric loss tangent and FMR
linewidth assumed by the calculations are smaller than their
actual values, corresponding to electric and magnetic losses,
respectively. Other losses, for example, discontinuity resulted
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from the coax-microstrip adapters employed under transmission
measurements, may also partially explain the discrepancy. Dis-
crepancy between theory and calculations in the FMR region is
even bigger due to the difficulty in obtaining good numerical
accuracy in that region. Also, the impedance value calculated
by using (26) may not be adequate in the FMR region since, to
large extent, wave propagation is no more TM-like. Measure-
ments show that wave propagation in the fabricated microstrip
line is roughly reciprocal, especially when outside the FMR re-
gion.

The calculated transmission phase basically confirms mea-
surements (Fig. 5) showing a resonant structure when FMR
comes across. Of special notice, it is seen in Fig. 5 that phase
shift occurs linearly in the low field region prior to FMR, sug-
gesting that a transmission line involving Y-type hexaferrite ma-
terial is a superior candidate for phase shifters, especially at
high frequencies. For a Y-type hexaferrite material, the crys-
talline anisotropy can be effectively used to substitute, at least
partially, the bias field requirement. For example, in the absence
of a material anisotropy, an external field in the order of 7 kOe is
required to effectively change the phase of a microwave signal
at 20 GHz. Similarly, an M-type hexaferrite can also provide
an internal field along the easy axis, thereby alleviating the bias
field requirement. However, in using an M-type hexaferrite, it
is inevitable to introduce a demagnetizing field in the order of

[see (A14a)] and, hence, it is not favorable for practical
applications, at least as phase shifters. M-type hexaferrite have
been practically used to fabricate self-biased circulators at mil-
limeter-wave frequencies [7].

IV. CONCLUSIONS

We conclude that Green’s function calculations utilizing
the current-potential technique provide sufficient accuracy in
calculating a layered structure containing anisotropic ferrite
substrates/superstrates magnetized along an arbitrary direction.
Our calculations are applicable even when the region of FMR
is approached. The formulation may be generalized to include
circuit inhomogeneities at multiple interfaces. For a transmis-
sion-line like geometry, the calculations are 1-D, and for a
antenna-patch-like geometry the calculations are 2-D. How-
ever, if the finite lateral dimension is considered important, one
needs to revert to a full-wave three-dimensional (3-D) analysis
invoking generic numerical routines for finite-element and
finite-difference calculations. The fit between our calculated
and measured phase shift and amplitude as a function of the
bias field is reasonable in view of the fact that there were no
adjustable parameters. All parameters used in the calculations
were obtained directly from measurements, including dc, VSM,
and FMR measurements [12].

APPENDIX

For clarity, the layer index is dropped in the following
discussion. For an isotropic dielectric medium, the four eigen-
modes are degenerate so that and

. Here, denotes the dielectric con-
stant of the medium. The longitudinal wave propagation con-
stant can thus be calculated from (4) for and
. Denote the azimuthal and polar angles of the column vector

as and , respectively. We define two
column vectors

(A1)

(A2)

from which the -matrix [see (2)] can be written as shown in
(A3) at the bottom of this page. In (A3), we have defined the
wave impedance of the medium as . In order to take
into account dielectric loss, the dielectric constantshall be
replaced by a complex number whose imaginary part is propor-
tional to the dielectric loss tangent of the medium

(A4)

For a ferrite medium biased by a dc magnetic field along an
arbitrary direction, the four eigenmodes for wave propagation
are, in general, nondegenerate [1]. Instead of using (4), the lon-
gitudinal wave number can now be solved from the following
quartic equation:

(A5)

where the polynomial coefficients are given by

(A6)

(A7)

(A8)

(A9)

(A3)



HOW et al.: CALCULATED AND MEASURED CHARACTERISTICS OF MICROSTRIP LINE FABRICATED ON Y-TYPE HEXAFERRITE SUBSTRATE 1287

(A10)

Here, denotes the unit vector along the
internal dc-bias field direction

(A11)

(A12)

(A13)

is the angular frequency, is the gyromagnetic ratio, is the
speed of light in vacuum, is the dielectric constant of the
ferrite, is the saturation magnetization, and is the
effective internal bias magnetic field given by

for an easy axis (A14a)

for an easy plane (A14b)

Here, denotes the externally applied dc magnetic field and
is the FMR linewidth. In (A14a), the easy axis occurs along

the -axis and the anisotropy field is denoted as [12, eq.
(10)]. In (A14b), the easy plane lies on the-plane and the
anisotropy field is [12, eq. (6)]. For practical applications,

is applied along the easy-axis direction (the-axis) or along
a direction lying on the easy plane (the-plane). For the case
of an easy axis, the demagnetizing field needs to be
subtracted from the total field, as expressed in (A14a). Here,
denotes the axial demagnetizing factor, which may be estimated
from a static calculation [7]. For cubic ferrites (e.g., garnets), the
anisotropy field is small, and the total internal effective field,

is given by (A14a) assuming is negligible. Magnetic
loss is accounted for by the term in (A14a) and (A14b),
and dielectric loss can be included by using the following com-
plex dielectric constant:

(A15)

In (A15), denotes the dielectric loss tangent of the ferrite
material.

After ’s are solved from (A5), denoted as ,
, the magnetic permeability can be cal-

culated from (4) as

(A16)

The associated electromagnetic fields are, therefore,

(A17)

(A18)

(A19)

where the primed fields are those expressed in a coordinate
frame whose -axis coincides with the internal dc-bias field di-
rection [1]

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

Here, denotes the unit vector along the
wave propagation direction , and

is the wave impedance. We note that for each mode
, the three vectors , , and are mutually perpendicular

to each other, as dictated by Maxwell equations. Also,is per-
pendicular to , as can be readily verified. In (A17)–(A19), the
coordinate transformation matrix is given by (A29), shown at
the top of the following page, and and denote the polar and
azimuthal angles along the internal bias field direction. That is,

. Therefore, when ,
, and , , are known from (A5), and from

(A17)–(A29), the -matrix of the ferrite layer can then be calcu-
lated using (2). The -matrix can be calculated from the-ma-
trix by using (1).
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